You are here

20 Dec 2018

Thomas MG, De Rycker M, Ajakane M, Albrecht S, Álvarez-Pedraglio AI, Boesche M, Brand S, Campbell L, Cantizani-Perez J, Cleghorn LAT, Copley RCB, Crouch SD, Daugan A, Drewes G, Ferrer S, Ghidelli-Disse S, Gonzalez S, Gresham SL, Hill AP, Hindley SJ, Lowe RM, MacKenzie CJ, MacLean L, Manthri S, Martin F, Miguel-Siles J, Nguyen VL, Norval S, Osuna-Cabello M, Woodland A, Patterson S, Pena I, Quesada-Campos MT, Reid IH, Revill C, Riley J, Ruiz-Gomez JR, Shishikura Y, Simeons FRC, Smith A, Smith VC, Spinks D, Stojanovski L, Thomas J, Thompson S, Underwood T, Gray DW, Fiandor JM, Gilbert IH, Wyatt PG, Read KD, Miles TJ.

The leishmaniases are diseases that affect millions of people across the world, in particular visceral leishmaniasis (VL) which is fatal unless treated. Current standard of care for VL suffers from multiple issues and there is a limited pipeline of new candidate drugs. As such, there is a clear unmet medical need to identify new treatments. This paper describes the optimization of a phenotypic hit against Leishmania donovani, the major causative organism of VL. The key challenges were to balance solubility and metabolic stability while maintaining potency. Herein, strategies to address these shortcomings and enhance efficacy are discussed, culminating in the discovery of preclinical development candidate GSK3186899/DDD853651 (1) for VL